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Equations relating structure functions
of all orders
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Exact equations are given that relate velocity structure functions of arbitrary order
with other statistics. ‘Exact’ means that no approximations are used except that the
Navier–Stokes equation and incompressibility condition are assumed to be accurate.
The exact equations are used to determine the structure function equations of all
orders for locally homogeneous but anisotropic turbulence as well as for the locally
isotropic case. The uses of these equations for investigating the approach to local
homogeneity as well as to local isotropy and the balance of the equations and
identification of scaling ranges are discussed. The implications for scaling exponents
and investigation of intermittency are briefly discussed.

1. Introduction
Kolmogorov’s (1941) equation and Yaglom’s equation were the first two equations

of the ‘dynamic theory’ of the local structure of turbulence. The name ‘dynamic
theory’ was originated by Monin & Yaglom (1975) (their § 22) to mean the deriva-
tion of equations relating structure functions by use of the Navier–Stokes equation
and/or the scalar conservation equation, and the investigation of the resulting stat-
istical equations. Monin & Yaglom (1975) pointed out that the dynamic theory
gives important relationships among structure functions, and that these relationships
provide extensions of predictions based on dimensional analysis. Theoretical studies
(Lindborg 1996; Hill 1997a) clarified the assumptions that are the basis of Kol-
mogorov’s equation and give equations that are valid for anisotropic and locally
homogeneous turbulence as well as for the case of local isotropy and local hom-
ogeneity. Antonia, Chambers & Browne (1983) and Chambers & Antonia (1984) used
experimental data to study of the balance of the classic equations of Kolmogorov
and Yaglom. There is renewed interest in examining the balance of those equations
using both experimental and DNS data and in generalizing the equations to cases of
inhomogeneous, non-stationary, and anisotropic turbulence (Lindborg 1999; Danaila
et al. 1999a, b, c; Antonia et al. 2000). Whereas Kolmogorov’s (1941) equation re-
lates second- and third-order velocity structure functions, the next-order dynamic
equation relates third- and fourth-order structure functions and a pressure-gradient,
velocity–velocity structure function. The balance of that next-order equation has been
examined by means of experimental and DNS data; this showed the behavior of the
pressure-gradient, velocity–velocity structure function (Hill & Boratav 2001). There is
now interest in dynamic-theory equations of arbitrarily high order N (Yakhot 2001).
Such equations relate velocity structure functions of order N and N + 1 and other
statistics. Those equations are given in this paper.
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Using the assumptions of local homogeneity, local isotropy and the Navier–Stokes
equation, Yakhot (2001) derived the equation for the characteristic function of the
probability distribution of two-point velocity differences. He uses that equation to
derive higher-order dynamic equations. Equations for arbitrarily high-order structure
functions can be obtained by repeated application of his differentiation procedure.
Yakhot (2001) studies the inertial range, deduces a closure, and thereby determines
the inertial-range scaling exponents of velocity structure functions. Yakhot’s study
is the first to make significant use of dynamic-theory equations to determine scaling
exponents.

The purposes and theoretical method of the present paper differ from those of
Yakhot (2001), but one purpose is to verify Yakhot’s equations from our distinctly
different derivation. That verification is given in § 5. In § 2, exact statistical equations
relating velocity structure functions of any order are derived from the Navier-Stokes
equation. ‘Exact’ means that no assumptions are made other than the assumption that
the Navier–Stokes equation and incompressibility are accurate. Since the equations
are exact, they apply to any flow, including laminar flow and inhomogeneous and
anisotropic turbulent flow. The exact statistical equations can be used to verify DNS
computations and detect their limitations. New experimental methods of Dahm and
colleagues (Su & Dahm 1996) can also be tested. For example, if DNS data are used
to evaluate the exact statistical equations, then the equations should balance to within
numerical precision, otherwise a computational problem is indicated. In § 3, statistical
equations valid for locally homogeneous and anisotropic turbulence are obtained
from the exact equations; those equations can be used with DNS or experimental
(Su & Dahm 1996) data to study the approach to local homogeneity of a particular
flow. This can be done by quantifying the terms that are neglected when passing
from exact equations to the locally homogeneous case, and by quantifying changes
in the retained terms as local homogeneity is approached when the spatial separation
vector is decreased. In § 4, statistical equations valid for locally isotropic and locally
homogeneous turbulence are obtained from those for the locally homogeneous case.
The approach to local isotropy can be studied by means analogous to the above
described evaluation of local homogeneity. Such studies might shed light on the
observed persistence of anisotropy (Pumir & Shraiman 1995; Shen & Warhaft 2000).
All dynamic-theory equations are now available to extend the above-mentioned
previous studies of the balance of dynamic-theory equations.

There have been many studies of the possibility that the inertial-range scaling expo-
nents of structure-function components are unequal (e.g. Chen et al. 1997; Boratav &
Pelz 1997; Boratav 1997; Grossmann, Lohse & Reeh 1997; van de Water & Herweijer
1999; Camussi & Benzi 1997; Dhruva, Tsuji & Sreenivasan 1997; Antonia, Zhou &
Zhu 1998; Kahaleras, Malecot & Gagne 1996; Noullez et al. 1997; Nelkin 1999;
Zhou & Antonia 2000; Kerr, Meneguzzi & Gotoh 2001). The usefulness of applying
the higher-order dynamic-theory equations to those investigations is considered in
§ 6.

Derivation of the equations produces substantial mathematical detail. Matrix-
based algorithms are invented such that the isotropic formulas for the divergence
and Laplacian of isotropic tensors of any order can be generated by computer. The
details of this mathematics are available and are herein referred to as the Archive.†

† The document ‘Mathematics of structure-function equations of all orders’ by R. J. Hill is
available from the archive of the Journal of Fluid Mechanics in the Editorial Office at Cambridge
and at xxx.lanl.gov/physics/0102055.
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2. Exact two-point equations
The Navier–Stokes equation for velocity component ui(x, t) is

∂tui(x, t) + un(x, t)∂xnui(x, t) = −∂xip(x, t) + ν∂xn∂xnui(x, t), (2.1)

and the incompressibility condition is ∂xnun(x, t) = 0. In (2.1), p(x, t) is the pressure
divided by the density (density is constant), ν is kinematic viscosity, and ∂ denotes
partial differentiation with respect to its subscript variable. Summation is implied by
repeated Roman indices. Consider another point x′ such that x′ and x are independent
variables. For brevity, let ui = ui(x, t), u

′
i = ui(x

′, t), etc. Require that x and x′ have no
relative motion. Then ∂xiu

′
j = 0, ∂x′i uj = 0, etc., and ∂t is performed with both x and x′

fixed. The change of independent variables from x and x′ to the sum and difference
independent variables is

X ≡ (x+ x′)/2 and r ≡ x− x′, and define r ≡ |r|. (2.2)

The relationship between the partial derivatives is

∂xi = ∂ri + 1
2
∂Xi , ∂x′i = −∂ri + 1

2
∂Xi , ∂Xi = ∂xi + ∂x′i , ∂ri = 1

2
(∂xi − ∂x′i). (2.3)

The change of variables organizes the equations in a revealing way because of the
following properties. In the case of homogeneous turbulence, ∂Xi operating on a
statistic produces zero because that derivative is the rate of change with respect to the
place where the measurement is performed. Consider a term in an equation composed
of ∂Xi operating on a statistic. For locally homogeneous turbulence, that term becomes
negligible as r is decreased relative to the integral scale. For the homogeneous and
locally homogeneous cases, the statistical equations retain their dependence on r,
which is the displacement vector of two points of measurement. Subtracting (2.1) at
x′ from (2.1) at x, performing the change of variables (2.2), and using (2.3) gives

∂tvi +Un∂Xnvi + vn∂rnvi = −Pi + ν(∂xn∂xnvi + ∂x′n∂x′nvi), (2.4)

where

vi ≡ ui − u′i, Un ≡ (un + u′n)/2, Pi ≡ ∂xi p− ∂x′i p′. (2.5)

Now multiply (2.4) by the product vjvk · · · vl which contains N−1 factors of velocity
difference, each factor having a distinct index. Sum the N equations as required to
produce symmetry under interchange of each pair of indices, excluding the summation
index n. Braces, i.e. {◦}, denote the sum of all terms of a given type that produce
symmetry under interchange of each pair of indices. The differentiation chain rule gives

{vjvk · · · vl∂tvi} = ∂t(vjvk · · · vlvi), (2.6)

{vjvk · · · vlUn∂Xnvi} = Un∂Xn(vjvk · · · vlvi) = ∂Xn(Unvjvk · · · vlvi), (2.7)

{vjvk · · · vlvn∂rnvi} = vn∂rn(vjvk · · · vlvi) = ∂rn(vnvjvk · · · vlvi). (2.8)

The right-most expressions in (2.7) and (2.8) follow from the incompressibility prop-
erty obtained from (2.3) and the fact that ∂xiu

′
j = 0, ∂x′i uj = 0; namely, ∂XnUn = 0,

∂Xnvn = 0, ∂rnUn = 0, ∂rnvn = 0. The viscous term in equation (2.4) produces
ν{vjvk · · · vl(∂xn∂xnvi + ∂x′n∂x′nvi)}; this expression is treated in the Archive. Thereby

∂t(vj · · · vi) + ∂Xn(Unvj · · · vi) + ∂rn(vnvj · · · vi)
= −{vj · · · vlPi}+ 2ν[(∂rn∂rn + 1

4
∂Xn∂Xn)(vj · · · vi)− {vk · · · vleij}], (2.9)
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where

eij ≡ (∂xnui)(∂xnuj) + (∂x′nu
′
i)(∂x′nu

′
j) = (∂xnvi)(∂xnvj) + (∂x′nvi)(∂x′nvj). (2.10)

The quantity {vj · · · vlPi} can be expressed differently on the basis that (2.3) allows
Pi to be written as Pi = ∂Xi(p − p′). The derivation is in the Archive; the alternative
formula is

{vjvk · · · vlPi} = {∂Xi[vjvk · · · vl(p− p′)]} − (N − 1)(p− p′){(sij − s′ij)vk · · · vl}, (2.11)

where the rate of strain tensor sij is defined by sij ≡ (∂xiuj + ∂xj ui)/2.

2.1. Hierarchy of exact statistical equations

Consider the ensemble average because it commutes with temporal and spatial
derivatives. The above notation of explicit indices is burdensome. Because the tensors
are symmetric, it suffices to show only the number of indices. Define the following
statistical tensors which are symmetric under interchange of any pair of indices,
excluding the summation index n in the definition of F[N+1]:

D[N] ≡ 〈vj · · · vi〉, F[N+1] ≡ 〈Unvj · · · vi〉,
T[N] ≡ 〈{vj · · · vlPi}〉, E[N] ≡ 〈{vk · · · vleij}〉, (2.12)

where angle brackets 〈 〉 denote the ensemble average, and the subscripts N and
N+1 within square brackets denote the number of indices. The left-hand side of each
definition in (2.12) is in implicit-index notation for which only the number of indices
is given; the right-hand sides in (2.12) are in explicit-index notation. The argument
list for each tensor is understood to be (X , r, t). The ensemble average of (2.9) is

∂tD[N] + ∇X · F[N+1] + ∇r · D[N+1] = −T[N] + 2ν[(∇2
r + 1

4
∇2
X )D[N] − E[N]], (2.13)

where ∇X · F[N+1] ≡ ∂Xn〈Unvj · · · vi〉, ∇r · D[N+1] ≡ ∂rn〈vnvj · · · vi〉, ∇2
r ≡ ∂rn∂rn , ∇2

X ≡
∂Xn∂Xn . The notations ∇X ·, ∇2

X , ∇r·, and ∇2
r are the divergence and Laplacian operators

in X -space and r-space, respectively.

3. Homogeneous and locally homogeneous turbulence
Consider homogeneous turbulence and locally homogeneous turbulence; the latter

applies for small r and large Reynolds number. The variation of the statistics with
the location of measurement or of evaluation is zero for the homogeneous case and is
neglected for the locally homogeneous case. Since that location is X , the result of ∇X
operating on a statistic vanishes or is neglected as the case may be. Thus the terms
∇X · F[N+1] and 1

4
∇2
XD[N] are deleted in (2.13); then (2.13) becomes

∂tD[N] + ∇r · D[N+1] = −T[N] + 2ν[∇2
rD[N] − E[N]]. (3.1)

Because the X -dependence is deleted, the argument list for each tensor is understood
to be (r, t). Note that ∂tD[N] is not necessarily negligible for homogeneous turbu-
lence. The ensemble average of equation (2.11) contains 〈{∂Xi[vjvk · · · vl(p − p′)]}〉 =
{∂Xi〈vjvk · · · vl(p− p′)〉} = {0} = 0. Thus, (2.11) gives the alternative that

T[N] = −(N − 1)〈(p− p′){(sij − s′ij)vk · · · vl}〉. (3.2)

One distinction between (3.1) and the hierarchy equations given in equations (13)
and (17) by Arad, L’vov & Proccacia (1999) is that their t- and r-derivatives operate
on only one velocity difference within their product of such differences, whereas the
derivatives in (2.9) and thus in (3.1) operate on all N of the velocity differences.
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4. Isotropic and locally isotropic turbulence
Consider isotropic turbulence and locally isotropic turbulence; the latter applies

for small r and large Reynolds number. Locally isotropic flows are a subset of locally
homogeneous flows (Monin & Yaglom 1975, § 13.3) and similarly for the relationship
between isotropic and homogeneous flows. Thus, the dynamical equations for locally
isotropic and isotropic turbulence are obtained from (3.1) such that the variable X
and the term ∇X · F[N+1] (see 2.13) do not appear. The tensors D[N], T[N], and E[N]

in (2.12) obey the isotropic formula. The Kronecker delta δij is defined by δij = 1 if
i = j and δij = 0 if i 6= j. Let δ[2P ] denote the product of P Kronecker deltas having
2P distinct indices, and let W[N](r) denote the product of N factors ri/r each with a
distinct index; the argument r is omitted when clarity does not suffer. Because each
tensor in (2.12) is symmetric under interchange of any two indices, their isotropic
formulas are particularly simple. Each formula is a sum of M + 1 terms, where
M = N/2 if N is even, and M = (N − 1)/2 if N is odd. Each term is the product of
a distinct scalar function with a W[N] and a δ[2P ]. From one term to the next a pair
of indices is transferred from a W[N] to a δ[2P ]; examples are in the Archive. For the
tensor D[N], denote the P th scalar function by DN,P (r, t). The isotropic formula for
D[N] is

D[N](r, t) =

M∑
P=0

DN,P (r, t){W[N−2P ](r)δ[2P ]}, (4.1)

and the isotropic formulas for T[N] and E[N] have the analogous notation. Recall from
§ 2 the meaning of the notation {◦} whereby {W[N−2P ](r)δ[2P ]} denotes the sum of all
terms of the type W[N−2P ](r)δ[2P ] that produce symmetry under interchange of each
pair of indices. An example is {W[1](r)δ[2]} = (rk/r)δij + (rj/r)δki + (ri/r)δjk .

A special Cartesian coordinate system simplifies the isotropic formulas. This co-
ordinate system has the positive 1-axis parallel to the direction of r, and the 2- and
3-axes are therefore perpendicular to r. Let N1, N2, and N3 be the number of indices
of a component of D[N] that are 1, 2, and 3, respectively; such that N = N1 +N2 +N3.
Because of symmetry, the order of indices is immaterial so that a component of D[N]

can be identified by N1, N2, and N3. Thus, denote a component of D[N] by D[N1 ,N2 ,N3]

which is a function of r and t. Likewise, {W[N−2P ](r)δ[2P ]}[N1 ,N2 ,N3] is a specific compo-
nent of the tensor {W[N−2P ](r)δ[2P ]}. If, in (4.1) N1 of the indices are assigned the value
1, and N2 and N3 of the indices are assigned the values 2 and 3, respectively, then
D[N1 ,N2 ,N3] and {W[N−2P ](r)δ[2P ]}[N1 ,N2 ,N3] will appear on the left-hand and right-hand
sides of (4.1), respectively. The {W[N−2P ](r)δ[2P ]}[N1 ,N2 ,N3] are numerical coefficients that
do not depend on r because r1/r = r/r = 1, r2/r = r3/r = 0. From the Archive, the
values of the coefficients are

if 2P < N2 +N3 then {W[N−2P ](r)δ[2P ]}[N1 ,N2 ,N3] = 0, otherwise, (4.2)

{W[N−2P ](r)δ[2P ]}[N1 ,N2 ,N3]

= N1!N2!N3!

/[
(N − 2P )!2P

(
N2

2

)
!

(
N3

2

)
!

(
P − N2

2
− N3

2

)
!

]
. (4.3)

By applying (4.1)–(4.3) for all combinations of indices, one can determine which
components D[N1 ,N2 ,N3] are zero and which are non-zero, identify M + 1 linearly
independent equations that determine the DN,P in terms of M+1 of the D[N1 ,N2 ,N3], and
find algebraic relationships between the remaining non-zero D[N1 ,N2 ,N3]. The derivations
are in the Archive; a summary follows.
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A component D[N1 ,N2 ,N3] is non-zero only if both N2 and N3 are even, and therefore
N1 is odd if N is odd, and N1 is even if N is even. Thereby, (M + 1)(M + 2)/2
components are non-zero. There are 3N components of D[N]; thus the other 3N −
(M + 1)(M + 2)/2 components are zero.

There exist (M + 1)M/2 kinematic relationships among the non-zero components
of D[N]. For each of the M + 1 cases of N1, these relationships are expressed by the
proportionality

D[N1 ,2L,0] : D[N1 ,2L−2,2] : D[N1 ,2L−4,4] : · · · : D[N1 ,0,2L]

= [(2L)!0!/L!0!] : [(2L− 2)!2!/(L− 1)!1!] :

[(2L− 4)!4!/(L− 2)!2!] : · · · : [0!(2L)!/0!L!]. (4.4)

For N = 4 with L = 2 (4.4) gives D[0,4,0] : D[0,2,2] : D[0,0,4] = 12 : 4 : 12. In explicit-
index notation this can be written as D2222 = 3D2233 = D3333, which was discovered by
Millionshtchikov (1941) and is the only previously known such relationship. Now, all
such relationships are known from (4.4).

There remain M + 1 linearly independent non-zero components of D[N]. This must
be so because there are M + 1 terms in (4.1) and the M + 1 scalar functions DN,P
therein must be related to M+1 components. Consider the M+1 linearly independent
equations that determine the DN,P in terms of M + 1 of the D[N1 ,N2 ,N3]. For simplicity,
the chosen components can all have N3 = 0, i.e. the choice of linearly independent
components can be D[N,0,0], D[N−2,2,0], D[N−4,4,0], . . . , D[N−2M,2M,0]. As described above,
assigning index values in (4.1) results in the chosen components on the left-hand side
and algebraic expressions on the right-hand side that contain the coefficients (4.2)–
(4.3). In the Archive, those equations are expressed in matrix form and solved by
matrix inversion methods. Given experimental or DNS data or a theoretical formula
for the chosen components, the solution of the algebraic equations determines the
functions DN,P in (4.1); then (4.1) completely specifies the tensor D[N].

The matrix algorithm in the Archive is an efficient means of determining isotropic
expressions for the terms ∇r ·D[N+1] and ∇2

rD[N] in (3.1). From the example for N = 2
in the Archive, (3.1) gives the two scalar equations

∂tD11 +

(
∂r +

2

r

)
D111 − 4

r
D122

= −T11 + 2ν

[(
∂2
r +

2

r
∂r − 4

r2

)
D11 +

4

r2
D22

]
− 2νE11

= 2ν

[
∂2
r D11 +

2

r
∂rD11 +

4

r2
(D22 − D11)

]
− 4ε/3, (4.5)

∂tD22 +

(
∂r +

4

r

)
D122 = −T22 + 2ν

[
2

r2
D11 +

(
∂2
r +

2

r
∂r − 2

r2

)
D22

]
− 2νE22

= 2ν

[
∂2
r D22 +

2

r
∂rD22 − 2

r2
(D22 − D11)

]
− 4ε/3, (4.6)

where use was made of the fact (Hill 1997a) that local isotropy gives T11 = T22 = 0
and 2νE11 = 2νE22 = 4ε/3, where ε is the average energy dissipation rate. Since
(4.5)–(4.6) are the same as equations (43)–(44) of Hill (1997a), and since Hill (1997a)
shows how these equations lead to Kolmogorov’s equation and his 4/5 law, further
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discussion of (4.5)–(4.6) is unnecessary. From the example for N = 3 in the Archive,

∂tD111 +

(
∂r +

2

r

)
D1111 − 6

r
D1122 = −T111 + 2ν[(∇2

rD)111 − E111], (4.7)

∂tD122 +

(
∂r +

4

r

)
D1122 − 4

3r
D2222 = −T122 + 2ν[(∇2

rD)122 − E122], (4.8)

(∇2
rD)111 ≡

(
∂2
r +

2

r
∂r − 6

r2

)
D111 +

12

r2
D122 =

(
− 4

r2
+

4

r
∂r + ∂2

r

)
D111, (4.9)

(∇2
rD)122 ≡ 2

r2
D111 +

(
∂2
r +

2

r
∂r − 8

r2

)
D122 =

1

6

(
4

r2
− 4

r
∂r + 5∂2

r + r∂3
r

)
D111. (4.10)

The incompressibility condition, D122 = 1
6
(D111 + r∂rD111), was used in (4.9)–(4.10).

Since Hill & Boratav (2001) discuss these equations and evaluate them using data,
further discussion of (4.7)–(4.10) is unnecessary.

The terms ∂tD[N], −T[N], and −2νE[N] in (3.1) have a repetitive structure in the
isotropic equations, e.g. for N = 4 the three equations are

∂tD1111 + (∇r · D[5])1111 = −T1111 + 2ν[(∇2
rD[4])1111 − E1111], (4.11)

∂tD1122 + (∇r · D[5])1122 = −T1122 + 2ν[(∇2
rD[4])1122 − E1122], (4.12)

∂tD2222 + (∇r · D[5])2222 = −T2222 + 2ν[(∇2
rD[4])2222 − E2222]. (4.13)

Thus, it suffices to give the isotropic formulas for the divergence ∇r · D[N+1] and
Laplacian ∇2

rD[N]; for N = 4 to 7, those isotropic formulas are given in table 1. For
N = 4 and 5 there are M + 1 = 3 equations; there are M + 1 = 4 equations for both
N = 6 and 7.

5. Comparison with previous results
The expression (∂r + 2/r)D111 − (4/r)D122 in (4.5) is the same as equation (9) of

Yakhot (2001), and (41) of Hill (1997a). The expression (∂r + 2/r)D1111 − (6/r)D1122

in (4.7) is the same as in the equation that follows Yakhot’s equation (11), and in
equation (16) of Hill & Boratav (2001) and in equation (8) of Kurien & Sreenivasan
(2001); (∂r + 4/r)D1122 − (4/3r)D2222 in (4.8) is the same as in equation (13) of Hill &
Boratav (2001) and equation (10) of Kurien & Sreenivasan (2001). The expressions
(∂r + 2/r)D[6,0,0] − (10/r)D[4,2,0] and (∂r + 6/r)D[2,4,0] − (6/5r)D[0,6,0] for the case N = 5
in table 1 are the same as in equations (9) and (10) of Kurien & Sreenivasan (2001).
More generally, the isotropic formulas for ∇r ·D[N+1] for the case N1 = N, N2 = N3 = 0
are (∂r + 2/r)D[N,0,0] − [2(N − 1)/r]D[N−2,2,0] which agrees with the left-hand side of
equation (7) of Yakhot (2001). The other components of ∇r ·D[N+1] were not given by
Yakhot (2001). The expressions from the Laplacian in (4.5)–(4.6) are the same as in
(41)–(42) of Hill (1997a); and (4.9)–(4.10) are the same as (7)–(8) of Hill & Boratav
(2001). All of the remaining results do not appear to have been given previously. The
above comparisons are sufficient to verify the matrix algorithm for generating the
structure-function equations to any desired order, as well as to independently validate
the derivation of Yakhot (2001).
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N = 4(
∂r +

2

r

)
D[5,0,0] − 8

r
D[3,2,0]

(
∂2
r +

2

r
∂r − 8

r2

)
D[4,0,0] +

14

r2
D[2,2,0] +

10

3r2
D[0,4,0](

∂r +
4

r

)
D[3,2,0] − 8

3r
D[1,4,0]

2

r2
D[4,0,0] +

(
− 52

3r2
+ ∂2

r +
2

r
∂r

)
D[2,2,0] +

34

9r2
D[0,4,0](

∂r +
6

r

)
D[1,4,0]

2

r2
D[2,2,0] +

(
− 2

3r2
+ ∂2

r +
2

r
∂r

)
D[0,4,0]

N = 5(
∂r +

2

r

)
D[6,0,0] − 10

r
D[4,2,0]

(
∂2
r +

2

r
∂r − 10

r2

)
D[5,0,0] − 14

r2
D[3,2,0] +

54

r2
D[1,4,0](

∂r +
4

r

)
D[4,2,0] − 4

r
D[2,4,0]

2

r2
D[5,0,0] +

(
−154

5r2
+ ∂2

r +
2

r
∂r

)
D[3,2,0] +

94

5r2
D[1,4,0](

∂r +
6

r

)
D[2,4,0] − 6

5r
D[0,6,0]

6

5r2
D[3,2,0] +

(
− 16

5r2
+ ∂2

r +
2

r
∂r

)
D[1,4,0]

N = 6(
∂r +

2

r

)
D[7,0,0] − 12

r
D[5,2,0]

(
∂2
r +

2

r
∂r − 12

r2

)
D[6,0,0] − 108

r2
D[4,2,0] +

920

3r2
D[2,4,0] − 416

15r2
D[0,6,0](

∂r +
4

r

)
D[5,2,0] − 16

3r
D[3,4,0]

2

r2
D[6,0,0] +

(
−242

5r2
+ ∂2

r +
2

r
∂r

)
D[4,2,0] +

824

15r2
D[2,4,0] − 248

75r2
D[0,6,0](

∂r +
6

r

)
D[3,4,0] − 12

5r
D[1,6,0]

4

5r2
D[4,2,0] +

(
− 112

15r2
+ ∂2

r +
2

r
∂r

)
D[2,4,0] +

4

3r2
D[0,6,0](

∂r +
8

r

)
D[1,6,0]

2

3r2
D[2,4,0] +

(
− 2

15r2
+ ∂2

r +
2

r
∂r

)
D[0,6,0]

N = 7(
∂r +

2

r

)
D[8,0,0] − 14

r
D[6,2,0]

(
∂2
r +

2

r
∂r − 14

r2

)
D[7,0,0] − 316

r2
D[5,2,0] +

3376

3r2
D[3,4,0] − 1376

5r2
D[1,6,0](

∂r +
4

r

)
D[6,2,0] − 20

3r
D[4,4,0]

2

r2
D[7,0,0] +

(
−1472

21r2
+ ∂2

r +
2

r
∂r

)
D[5,2,0] +

7808

63r2
D[3,4,0] − 304

15r2
D[1,6,0](

∂r +
6

r

)
D[4,4,0] − 18

5r
D[2,6,0]

4

7r2
D[5,2,0] +

(
− 206

15r2
+ ∂2

r +
2

r
∂r

)
D[3,4,0] +

1132

175r2
D[1,6,0](

∂r +
8

r

)
D[2,6,0] − 8

7r
D[0,8,0]

2

7r2
D[3,4,0] +

(
− 76

35r2
+ ∂2

r +
2

r
∂r

)
D[1,6,0]

Table 1. The isotropic formulas for ∇r ·D[N+1] are on the left and those for ∇2
rD[N] are on the right.

6. Summary and discussion
The third paragraph of the introduction summarizes part of this paper and is

not repeated here. In addition: All of the kinematic relationships (4.4) between
components of isotropic, symmetric structure functions of arbitrary order have been
identified, whereas previously only one was known. All of the components that are
zero have been identified (a recent experimental evaluation of some of them is given
by Kurien & Sreenivasan 2000). The kinematic relationships show that the scaling
exponents of certain different components must be equal; if the exponents are not
equal when evaluated using one’s data, then the kinematic relationships (4.4) provide
a measure of either the error in the exponents or the deviation from local isotropy.
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The dynamic equations of order N can be used to test the extent of a scaling range
for evaluation of scaling exponents of velocity structure functions of order N + 1
because the time-derivative and viscous terms should be zero in an inertial range.
The graphical presentations of the balance of Kolmogorov’s equation by Antonia
et al. (1983), Chambers & Antonia (1984), Danaila et al. (1999a, b), and Antonia
et al. (2000) show the extent of, or deviation from, inertial-range exponents. The
higher-order equations given here can be used in an analogous manner.

The energy dissipation rate ε plays an essential role at all r in Kolmogorov’s
equation. In our formulation ε arises in (4.5)–(4.6) from the tensor components 2νE11

and 2νE22. On the other hand, for the next-order equations (4.7)–(4.8) Hill (1997b)
showed that the corresponding terms 2νE111 and 2νE122 are negligible in the inertial
range. Yakhot (2001) shows that the components E[N,0,0] are negligible in the inertial
range for all of the higher-order equations for which N is odd. Kolmogorov’s (1941)
inertial-range scaling using ε and r as the only relevant parameters can be used to
estimate the relative magnitudes of the term ∇r · D[N+1] in (3.1) to the terms 2ν∇2

rD[N]

and 2νE[N]. Doing so, the ratio of any non-zero component of 2ν∇2
rD[N] or 2νE[N] to

the corresponding component of ∇r · D[N+1] is proportional to ν/r4/3 ε1/3 = (r/η)−4/3,
which asymptotically vanishes in the inertial range (η ≡ (ν3/ε)1/4). Thus, both terms
2ν∇2

rD[N] and 2νE[N] are to be neglected in an inertial range if N > 2.
One concludes that all equations of order higher than Kolmogorov’s equation

reduce to the isotropic formula for ∇r · D[N+1] = −T[N] in the inertial range. This
formula shows that T[N] is at the heart of two issues that have received much
attention: (i) whether or not different components of the velocity structure function
D[N+1] have differing exponents in the inertial range, and (ii) the increasing deviation
of those exponents from Kolmogorov scaling as N increases. The physical basis for the
importance of T[N] is the importance of vortex tubes to the intermittency phenomenon
(Pullin & Saffman 1998) combined with the fact that the pressure-gradient force is
essential to the existence of vortex tubes; the pressure-gradient force prevents a vortex
tube from cavitating despite the centrifugal force. Pressure gradients are the sinews
of vortices. Direct investigation of T[N] using DNS can reveal much about the two
issues.

The author thanks the organizers of the Hydrodynamics Turbulence Program held
at the Institute for Theoretical Physics, UCSB, whereby this research was supported
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